
Tom Honermann <tom@honermann.net> January 2nd, 2021

Clarify guidance for use of a BOM as a UTF-8 encoding signature

Abstract
The Unicode standard is clear that a BOM may be used as an encoding signature for UTF-8 encoded
data, but its guidance regarding when a BOM is or is not recommended for such use is not consistently
interpreted.

This paper seeks to clarify the guidance offered by the Unicode standard for use of a BOM as an
encoding signature and proposes several possible resolutions ranging from removal of existing
guidance to expanding guidance tailored to protocol designers, software developers, and text authors.

Introduction
This paper follows prior discussion on the unicode.org mailing list. The relevant email threads are
archived and available at https://corp.unicode.org/pipermail/unicode/2020-June/008713.html and
https://corp.unicode.org/pipermail/unicode/2020-October/009070.html.

Unicode 13, in the “Byte Order” subsection of section 2.6, “Encoding Schemes”, states:

… Use of a BOM is neither required nor recommended for UTF-8 , but may be encountered
in contexts where UTF-8 data is converted from other encoding forms that use a BOM or
where the BOM is used as a UTF-8 signature. See the “Byte Order Mark” subsection in
Section 23.8, Specials, for more information.

This statement is sometimes interpreted as a recommendation against use of a BOM in UTF-8 text and
sometimes interpreted as the lack of a recommendation either for or against such use. In either case, no
rationale for a recommendation or lack thereof is offered within this section or in those it references.

Unicode 13, in the “Unicode Signature” subsection of section 2.13, “Special Characters”, states:

Unicode Signature. An initial BOM may also serve as an implicit marker to identify a file as
containing Unicode text. For UTF-16, the sequence FE16 FF16 (or its byte-reversed counterpart,
FF16 FE16) is exceedingly rare at the outset of text files that use other character encodings. The
corresponding UTF-8 BOM sequence, EF16 BB16 BF16, is also exceedingly rare. In either case,
it is therefore unlikely to be confused with real text data. The same is true for both single-byte
and multibyte encodings.

Data streams (or files) that begin with the U+FEFF byte order mark are likely to contain
Unicode characters. It is recommended that applications sending or receiving untyped

data streams of coded characters use this signature. If other signaling methods are used,

signatures should not be employed.

Conformance to the Unicode Standard does not require the use of the BOM as such a
signature. See Section 23.8, Specials, for more information on the byte order mark and its use
as an encoding signature.

1

https://corp.unicode.org/pipermail/unicode/2020-June/008713.html
https://corp.unicode.org/pipermail/unicode/2020-October/009070.html

This section offers a clear recommendation favoring use of a BOM as an encoding signature in untyped
data and a stronger recommendation against such use when encoding is indicated via other means.
Neither interpretation of the highlighted text from section 2.6 is fully compatible with this section.

The referenced "Byte Order Mark" subsection of section 23.8 contains no guidance; it is factual and
details some possible consequences of BOM use as an encoding signature, but does not apply a
judgment. The following statements could be interpreted as an endorsement of such use in UTF-8 and
other byte oriented encodings.

… Instead, its most common and most important usage is in the following two circumstances:

1. Unmarked Byte Order. ...

2. Unmarked Character Set. In some circumstances, the character set information for a
stream of coded characters (such as a file) is not available. The only information
available is that the stream contains text, but the precise character set is not known.

In these two cases, the character U+FEFF is used as a signature to indicate the byte order
and the character set by using the byte serializations described in Section 3.10, Unicode
Encoding Schemes. ...

In UTF-8, the BOM corresponds to the byte sequence <EF16 BB16 BF16>. Although there
are never any questions of byte order with UTF-8 text, this sequence can serve as signature
for UTF-8 encoded text where the character set is unmarked. ...

The characteristic sequences of bytes associated with an initial U+FEFF can serve as
signatures in those cases, as shown in Table 23-7.

Table 23-7. U+FEFF Signature in Other Charsets
Charset Signature

SCSU 0E FE FF

BOCU-1 FB EE 28

UTF-7 2B 2F 76 38 or
2B 2F 76 39 or
2B 2F 76 2B or
2B 2F 76 2F

UTF-EBCDIC DD 73 66 73

The “Byte Order Mark (BOM)” section of the Unicode FAQ at
https://www.unicode.org/faq/utf_bom.html#BOM can likewise be read as endorsing use of a BOM as
an encoding signature. In this case, some guidance for use is provided.

Q: Where is a BOM useful?

A: A BOM is useful at the beginning of files that are typed as text, but for which it is not
known whether they are in big or little endian format—it can also serve as a hint indicating
that the file is in Unicode, as opposed to in a legacy encoding and furthermore, it act as a
signature for the specific encoding form used.

2

https://www.unicode.org/faq/utf_bom.html#BOM

Q: When a BOM is used, is it only in 16-bit Unicode text?

A: No, a BOM can be used as a signature no matter how the Unicode text is transformed:
UTF-16, UTF-8, or UTF-32. The exact bytes comprising the BOM will be whatever the
Unicode character U+FEFF is converted into by that transformation format. In that form,
the BOM serves to indicate both that it is a Unicode file, and which of the formats it is in. ...

Q: How I should deal with BOMs?

A: Here are some guidelines to follow:

1. A particular protocol (e.g. Microsoft conventions for .txt files) may require use of
the BOM on certain Unicode data streams, such as files. When you need to conform
to such a protocol, use a BOM.

2. Some protocols allow optional BOMs in the case of untagged text. In those cases,

 Where a text data stream is known to be plain text, but of unknown encoding,
BOM can be used as a signature. If there is no BOM, the encoding could be
anything.

 Where a text data stream is known to be plain Unicode text (but not which
endian), then BOM can be used as a signature. If there is no BOM, the text
should be interpreted as big-endian.

3. Some byte oriented protocols expect ASCII characters at the beginning of a file. If
UTF-8 is used with these protocols, use of the BOM as encoding form signature
should be avoided.

4. Where the precise type of the data stream is known (e.g. Unicode big-endian or
Unicode little-endian), the BOM should not be used. In particular, whenever a data
stream is declared to be UTF-16BE, UTF-16LE, UTF-32BE or UTF-32LE a BOM
must not be used. ...

The guidelines offered in the FAQ are targeted at text authors. How should a protocol designer or
software developer interpret them? Should new protocols be designed to mandate use of a particular
encoding and, if so, should the presence of a BOM be treated as an error? If a protocol requires UTF-8,
but permits an optional BOM, should software targeting that protocol proactively suppress a BOM
when copying text produced elsewhere? The guidelines are not clear on these questions.

3

The referenced sections do state some consequences for use of a BOM as an encoding signature in
UTF-8, and those consequences could be used as rationale for avoidance as summarized below.

• Concatenating UTF-8 content containing a BOM requires that the BOM be removed in order to
avoid unintended insertion of a U+FEFF character that then becomes part of the concatenated
textual content.

• A BOM may interfere with normal processing of files that are required to begin with an ASCII
sequence. POSIX shell scripts are an example where a BOM may interfere with recognition of a
“#!” marker at the beginning of the file.

• Since a BOM is not required for endian determination, a BOM consumes space unnecessarily if
the content is known to be UTF-8.

These consequences are too nuanced to provide clear guidance to text authors or developers of software
or protocols that produce or consume UTF-8 content.

Proposed Resolutions
All proposed changes are relative to Unicode 13.

Option 1: Remove guidance regarding use of a BOM as a UTF-8
signature.
This would remove the existing guidance offered by the standard, presumably relegating such guidance
to other standards or guidelines such as those in the Unicode FAQ.

Modify the “Byte Order” subsection of section 2.6, “Encoding Schemes” as follows:

The endian order entry for UTF-8 in Table 2-4 is marked N/A because UTF-8 code units are 8
bits in size, and the usual machine issues of endian order for larger code units do not apply.
The serialized order of the bytes must not depart from the order defined by the UTF-8
encoding form. Use of a BOM is neithernot required nor recommended for UTF-8, but may be
encountered in contexts where UTF-8 data is converted from other encoding forms that use a
BOM or where the BOM is used as a UTF-8 signature. See the “Byte Order Mark” subsection
in Section 23.8, Specials, for more information. The standard does not recommend for or
against use of a BOM in UTF-8 data.

Modify the “Unicode Signature” subsection of section 2.13, “Special Characters” as follows:

Unicode Signature. An initial BOM may also serve as an implicit marker to identify a file as
containing Unicode text. For UTF-16, the sequence FE16 FF16 (or its byte-reversed counterpart,
FF16 FE16) is exceedingly rare at the outset of text files that use other character encodings. The
corresponding UTF-8 BOM sequence, EF16 BB16 BF16, is also exceedingly rare. In either case,
it is therefore unlikely to be confused with real text data. The same is true for both single-byte
and multibyte encodings.

Data streams (or files) that begin with the U+FEFF byte order mark are likely to contain
Unicode characters. It is recommended that applications sending or receiving untyped data
streams of coded characters use this signature. If other signaling methods are used, signatures

4

should not be employed.

Conformance to the Unicode Standard does not require the use of the BOM as such a
signature. See Section 23.8, Specials, for more information on the byte order mark and its use
as an encoding signature.

Option 2: Expand the “Byte Order Mark (BOM)” subsection in
section 23.8 to provide rationale and targeted guidance
The following is suggested wording to be added to section 23.8 to clarify the guidelines for use of a
BOM as a UTF-8 encoding signature.

Guidelines for use of a BOM in UTF-8. The UTF-8 encoding scheme permits, but does not
require, a BOM to be present. This raises the question of when a BOM should or should not be
generated or expected when producing or consuming UTF-8 encoded text.

The utility of a BOM in UTF-8 is limited to scenarios in which a byte sequence contains text
that may or may not be encoded as UTF-8. In such scenarios, a BOM may be useful to
differentiate text encoded in one of a few possible character encodings. However, the presence
of a BOM may also complicate text processing.

• Some text processing tools fail to handle BOMs correctly. This is especially true for
programs that were historically encoding agnostic and for ad hoc programs written for
one-time use purposes.

• A text processing tool must maintain additional state in order to recognize if an
observed U+FEFF character is a BOM or whether it should be treated as a ZERO
WIDTH NON-BREAKING SPACE (ZWNBSP). Such state may or may not be
intrinsic to the structure of the program.

• A text generating tool may be required to generate a BOM if the first character to be
encoded is U+FEFF and that character is not intended to be used as a BOM. This is
only required for compatibility with Unicode versions prior to 3.2; U+2060 WORD
JOINER should be used in place of U+FEFF for such purposes with more recent
Unicode versions.

• Concatenation of text containing a BOM requires care. When concatenating to an
empty text, preservation of a BOM may be warranted, but otherwise, failure to elide the
BOM will result in the insertion of a U+FEFF character that becomes part of the
concatenated textual content.

• In situations where text is known to be encoded as UTF-8, a BOM consumes storage
space unnecessarily. While this is unlikely to be a concern for a single document, it
may be a significant concern in situations involving thousands or millions of small text
sources.

Due to the above complications, use of a BOM as an encoding signature in UTF-8 text is
discouraged. The following guidelines advise alternative approaches tailored for a few distinct
audiences.

Except where otherwise noted, these approaches preclude the possibility of a text starting with
a U+FEFF character that is not intended as a BOM under the expectation that such text is

5

exceedingly rare and most likely due to a failure to elide a BOM. Text authored for Unicode
3.2 or later should use U+2060 WORD JOINER instead.

Protocol designers:

• When designing a protocol that does not require compatibility with an existing corpus
of differently encoded text, mandate use of UTF-8 without a BOM. Diagnose the
presence of a BOM in consumed text as an error and produce UTF-8 text without a
BOM. This approach is intended to explicitly discourage use of a BOM in UTF-8 text
in new protocols so as to reduce requirement complexity for text processors.

• Otherwise, when designing a protocol that requires compatibility with an existing
corpus of UTF-8 text that may contain BOMs, mandate use of UTF-8 with or without a
BOM. Recognize and discard a BOM in consumed text and produce UTF-8 text
without a BOM.

• Otherwise, when designing a protocol that requires compatibility with an existing
corpus of differently encoded text, specify UTF-8 as the default encoding with use of
other encodings negotiated using information other than a BOM. Recognize and
discard a BOM in consumed text and produce UTF-8 text without a BOM.

• Otherwise, when designing a protocol that requires compatibility with an existing
corpus of differently encoded ASCII based text, where the encoding of each text is not
otherwise specified, and where UTF-8 cannot be assumed by default, mandate use of
UTF-8 with a BOM. Recognize and retain a BOM in consumed text, produce UTF-8
text with a BOM unless the text contains no non-ASCII characters (the exception is
intended to avoid the addition of a BOM to ASCII text thus rendering such text as non-
ASCII). This approach should be reserved for scenarios in which UTF-8 cannot be
adopted as a default due to backward compatibility concerns.

• Otherwise, the protocol must require compatibility with an existing corpus of
differently encoded text, some of which may be non-ASCII based, and where UTF-8
cannot be specified as the default encoding. Mandate use of a BOM in all UTF-8 text.
Recognize and retain a BOM in consumed text, produce UTF-8 text with a BOM, even
in text that would otherwise be ASCII. This approach should be reserved as a last resort
option in rare scenarios where non-ASCII based text is present.

Software developers:

• If consuming UTF-8, recognize and discard a BOM unless a protocol mandates the
absence of a BOM in which case:

◦ If compatibility with Unicode versions prior to 3.2 is a goal, treat the leading
U+FEFF character as a ZERO WIDTH NON-BREAKING SPACE (ZWNBSP).

◦ Otherwise, diagnose the U+FEFF character as an error (a BOM where a BOM is
not permitted).

• If producing UTF-8, include a BOM:

◦ If explicitly directed to do so.

◦ Otherwise, if a BOM is known to be required by a protocol.

◦ Otherwise, if compatibility with Unicode versions prior to 3.2 is a goal and the text
is intended to start with a U+FEFF character that is not intended as a BOM.

6

Text authors:

• Do not use U+FEFF as a ZWNBSP character; use U+2060 WORD JOINER instead.
• Include a BOM if one is known to be required by a targeted protocol.
• Otherwise, include a BOM when authoring a UTF-8 text file that contains non-ASCII

characters, is not targeting a specific protocol, and may be opened by applications that
will not assume UTF-8 by default (this is useful on systems like Microsoft Windows
where some applications assume text files to be encoded with the Active Code Page).

• Otherwise, do not include a BOM.

Acknowledgements
Thank you to Peter Brett, Nial Douglas, Asmus Freytag, Jens Maurer, Alisdair Meredith, Murray
Sargent, and Shawn Steele for their review and feedback on this paper.

7

	Abstract
	Introduction
	Proposed Resolutions
	Option 1: Remove guidance regarding use of a BOM as a UTF-8 signature.
	Option 2: Expand the “Byte Order Mark (BOM)” subsection in section 23.8 to provide rationale and targeted guidance

	Acknowledgements

