
Tom Honermann <tom@honermann.net> October 6th, 2020

Clarify guidance for use of a BOM as a UTF-8 encoding signature

This paper follows prior discussion on the unicode.org mailing list. The relevant email thread is
archived and available at https://corp.unicode.org/pipermail/unicode/2020-June/008713.html.

Unicode 13, in the “Byte Order” subsection of section 2.6, “Encoding Schemes”, states:

… Use of a BOM is neither required nor recommended for UTF-8, but may be encountered
in contexts where UTF-8 data is converted from other encoding forms that use a BOM or
where the BOM is used as a UTF-8 signature. See the “Byte Order Mark” subsection in
Section 23.8, Specials, for more information.

That statement is unconditional regarding the recommendation against use of a BOM for UTF-8, but
neither rationale nor guidance for the recommendation is provided.

The referenced "Byte Order Mark" subsection in section 23.8 contains no similar guidance; it is factual
and details some possible consequences of BOM use as an encoding signature, but does not apply a
judgment. The following statements could be interpreted as an endorsement of such use in UTF-8 and
other byte oriented encodings.

… Instead, its most common and most important usage is in the following two circumstances:

1. Unmarked Byte Order. ...

2. Unmarked Character Set. In some circumstances, the character set information for a
stream of coded characters (such as a file) is not available. The only information
available is that the stream contains text, but the precise character set is not known.

In these two cases, the character U+FEFF is used as a signature to indicate the byte order
and the character set by using the byte serializations described in Section 3.10, Unicode
Encoding Schemes. ...

In UTF-8, the BOM corresponds to the byte sequence <EF16 BB16 BF16>. Although there
are never any questions of byte order with UTF-8 text, this sequence can serve as signature
for UTF-8 encoded text where the character set is unmarked. ...

The characteristic sequences of bytes associated with an initial U+FEFF can serve as
signatures in those cases, as shown in Table 23-7.

Table 23-7. U+FEFF Signature in Other Charsets
Charset Signature

SCSU 0E FE FF

BOCU-1 FB EE 28

UTF-7 2B 2F 76 38 or
2B 2F 76 39 or
2B 2F 76 2B or
2B 2F 76 2F

UTF-EBCDIC DD 73 66 73

1

https://corp.unicode.org/pipermail/unicode/2020-June/008713.html

The “Byte Order Mark (BOM)” section of the Unicode FAQ at
https://www.unicode.org/faq/utf_bom.html#BOM can likewise be read as endorsing use of a BOM as
an encoding signature. In this case, some guidance for use is provided.

Q: Where is a BOM useful?

A: A BOM is useful at the beginning of files that are typed as text, but for which it is not
known whether they are in big or little endian format—it can also serve as a hint indicating
that the file is in Unicode, as opposed to in a legacy encoding and furthermore, it act as a
signature for the specific encoding form used.

Q: When a BOM is used, is it only in 16-bit Unicode text?

A: No, a BOM can be used as a signature no matter how the Unicode text is transformed:
UTF-16, UTF-8, or UTF-32. The exact bytes comprising the BOM will be whatever the
Unicode character U+FEFF is converted into by that transformation format. In that form,
the BOM serves to indicate both that it is a Unicode file, and which of the formats it is in. ...

Q: How I should deal with BOMs?

A: Here are some guidelines to follow:

1. A particular protocol (e.g. Microsoft conventions for .txt files) may require use of
the BOM on certain Unicode data streams, such as files. When you need to conform
to such a protocol, use a BOM.

2. Some protocols allow optional BOMs in the case of untagged text. In those cases,

 Where a text data stream is known to be plain text, but of unknown encoding,
BOM can be used as a signature. If there is no BOM, the encoding could be
anything.

 Where a text data stream is known to be plain Unicode text (but not which
endian), then BOM can be used as a signature. If there is no BOM, the text
should be interpreted as big-endian.

3. Some byte oriented protocols expect ASCII characters at the beginning of a file. If
UTF-8 is used with these protocols, use of the BOM as encoding form signature
should be avoided.

4. Where the precise type of the data stream is known (e.g. Unicode big-endian or
Unicode little-endian), the BOM should not be used. In particular, whenever a data
stream is declared to be UTF-16BE, UTF-16LE, UTF-32BE or UTF-32LE a BOM
must not be used. ...

The guidelines offered in the FAQ are targeted at text authors. How should a protocol designer or
software developer interpret them given the recommendation in section 2.6 against use of a BOM in
UTF-8? Should new protocols be designed to mandate use of a particular encoding and, if so, should
the presence of a BOM be treated as an error? If a protocol requires UTF-8, but permits an optional
BOM, should software targeting that protocol proactively suppress a BOM when copying text produced
elsewhere? The guidelines are not clear on questions like these.

2

https://www.unicode.org/faq/utf_bom.html#BOM

The referenced sections do state some consequences for use of a BOM as an encoding signature in
UTF-8, and those consequences could be used as rationale for avoidance as summarized below.

• Concatenating UTF-8 content containing a BOM requires that the BOM be removed in order to
avoid unintended insertion of a U+FEFF character that then becomes part of the concatenated
textual content.

• A BOM may interfere with normal processing of files that are required to begin with an ASCII
sequence. POSIX shell scripts are an example where a BOM may interfere with recognition of a
“#!” marker at the beginning of the file.

• Since a BOM is not required for endian determination, a BOM consumes space unnecessarily if
the content is known to be UTF-8.

These consequences are too nuanced to provide clear guidance to text authors or developers of software
or protocols that produce or consume UTF-8 content.

Possible Resolutions

Strike “nor recommended” from the quoted text of section 2.6
This would remove the existing guidance offered by the standard, presumably relegating such guidance
to other standards or guidelines such as those in the Unicode FAQ.

Expand the “Byte Order Mark (BOM)” subsection in section 23.8
to provide rationale and targeted guidance
The following is suggested wording to be added to section 23.8 to clarify the guidelines for use of a
BOM as a UTF-8 encoding signature.

Guidelines for use of a BOM in UTF-8. The UTF-8 encoding scheme permits, but does not
require, a BOM to be present. This raises the question of when a BOM should or should not be
generated or expected when producing or consuming UTF-8 encoded text.

The utility of a BOM in UTF-8 is limited to scenarios in which a byte sequence contains text
that may or may not be encoded as UTF-8. In such scenarios, a BOM may be useful to
differentiate text encoded in one of a few possible character encodings. However, the presence
of a BOM may also complicate text processing.

• Some text processing tools fail to handle BOMs correctly. This is especially true for
programs that were historically encoding agnostic and for ad hoc programs written for
one-time use purposes.

• A text processing tool must maintain additional state in order to recognize if an
observed U+FEFF character is a BOM or whether it should be treated as a ZERO
WIDTH NON-BREAKING SPACE (ZWNBSP). Such state may or may not be
intrinsic to the structure of the program.

• A text generating tool may be required to generate a BOM if the first character to be
encoded is U+FEFF and that character is not intended to be used as a BOM. This is
only required for compatibility with Unicode versions prior to 3.2; U+2060 WORD

3

JOINER should be used in place of U+FEFF for such purposes with more recent
Unicode versions.

• Concatenation of text containing a BOM requires care. When concatenating to an
empty text, preservation of a BOM may be warranted, but otherwise, failure to elide the
BOM will result in the insertion of a U+FEFF character that becomes part of the
concatenated textual content.

• In situations where text is known to be encoded as UTF-8, a BOM consumes storage
space unnecessarily. While this is unlikely to be a concern for a single document, it
may be a significant concern in situations involving thousands or millions of small text
sources.

Due to the above complications, use of a BOM as an encoding signature in UTF-8 text is
discouraged. The following guidelines advise alternative approaches tailored for a few distinct
audiences.

Except where otherwise noted, these approaches preclude the possibility of a text starting with
a U+FEFF character that is not intended as a BOM under the expectation that such text is
exceedingly rare and most likely due to a failure to elide a BOM. Text authored for Unicode
3.2 or later should use U+2060 WORD JOINER instead.

Protocol designers:

• If possible, mandate use of UTF-8 without a BOM; diagnose the presence of a BOM in
consumed text as an error, and produce text without a BOM.

• Otherwise, if possible, mandate use of UTF-8 with or without a BOM; accept and
discard a BOM in consumed text, and produce text without a BOM.

• Otherwise, if possible, use UTF-8 as the default encoding with use of other encodings
negotiated using information other than a BOM; accept and discard a BOM in
consumed text, and produce text without a BOM.

• Otherwise, require the presence of a BOM to differentiate UTF-8 encoded text in both
consumed and produced text. This approach should be reserved for scenarios in which
UTF-8 cannot be adopted as a default due to backward compatibility concerns.

Software developers:

• If consuming UTF-8, recognize and discard a BOM unless a protocol mandates the
absence of a BOM in which case:

◦ If compatibility with Unicode versions prior to 3.2 is a goal, treat the leading
U+FEFF character as a ZERO WIDTH NON-BREAKING SPACE (ZWNBSP).

◦ Otherwise, diagnose the U+FEFF character as an error (a BOM where a BOM is
not permitted).

• If producing UTF-8, include a BOM:

◦ If explicitly directed to do so.

◦ Otherwise, if a BOM is known to be required by a protocol.

◦ Otherwise, if compatibility with Unicode versions prior to 3.2 is a goal and the text
is intended to start with a U+FEFF character that is not intended as a BOM.

4

Text authors:

• Include a BOM only if a BOM is known to be required by a protocol.
• Do not use U+FEFF as a ZWNBSP character; use U+2060 WORD JOINER instead.

5

	Possible Resolutions
	Strike “nor recommended” from the quoted text of section 2.6
	Expand the “Byte Order Mark (BOM)” subsection in section 23.8 to provide rationale and targeted guidance

